马春兰

作者:时间:2019-07-20点击数:

硕士研究生指导教师简介

姓名

马春兰

马春兰_副本.png

性别

出生年月

1973.03

最高学历、学位

博士研究生、博士

职称

教授

职务

院党委书记

电子邮箱

wlxmcl@mail.usts.edu.cn


一、基本情况:

现任苏州科技大学物理科学与技术学院教授、党委书记,苏州市光子产业科技镇长团团长(江苏省第十六批、第十七批科技镇长团团长),江苏省材料学会副理事长,江苏省研究生教育指导委员会委员,江苏省科技厅科技奖会评专家、双碳科技创新专项会评专家,“十四五”江苏省重点学科会评专家,江苏省优秀硕士学位、博士学位论文会评专家。

2007年于复旦大学获博士学位(导师为中科院院士王迅教授和杨中芹教授),2006年到意大利学术交流3个月(合作导师:Silvia Picozzi),2007.072008.08于台湾交通大学做博士后研究一年,2013.042014.04到美国德克萨斯大学奥斯汀分校(合作导师:Allan MacDonald教授)课题组访学一年。2014年入选江苏省高校“青蓝工程”中青年学术带头人,2017年入选江苏省第十四批“六大人才高峰”高层次人才,2022年入选苏州市“推动数字经济时代产业创新集群发展工作”先进个人。主编出版江苏省重点教材《数学物理方法》(高等教育出版社),主持制作的《电动力学》课件获江苏省优秀多媒体教学课件二等奖,主持完成江苏省研究生教育教学改革重点课题(结题优秀),指导学生获“挑战杯”全国二等奖(第一指导教师)。


二、主要研究领域及学术成果:

主持完成国家自然科学基金2项,主持国家重点研发计划子课题“智能传感器”重点专项。在PRLAM等期刊发表SCI论文100余篇,他引2000多次,获日内瓦国际发明奖金奖、省材料学会科学技术奖一等奖(排名第一)、省教育科学研究成果奖自然科学奖(排名第一)。具体研究方向如下:

1. 计算凝聚态物理。基于密度泛函理论(DFT)第一性原理方法研究:(1ABO3型钙钛矿结构过渡金属氧化物的体材料性质,以及静水压、外延应变、氧空位、掺杂引起的结构相变、电子结构和磁性质的变化;(2)过渡金属氧化物表面和界面电子重构;(3)纳米隧道结输运性质。目前研究方向:新型光伏材料与器件设计。

2. 表面增强拉曼散射实验和理论研究。(1)实验方面的研究:金属单原子W配位环境对催化效果的影响、基于钨氧化物的SERS性能与机理研究、多机制协同SERS效应的研究、电子态调控的实验研究;(2)理论方面的研究:第一性原理HSE06方法研究钨氧化物的电子结构;第一性原理方法研究二维材料中的磁相互作用;第一性原理方法预测材料的相结构;第一性原理方法研究表面增强拉曼散射增强机制


三、代表性科研成果:

1. 第一作者/通讯作者论文

[1] Superconductor-semiconductor-superconductor lateral heterojunction diodes based on MSi2N4 (M =Ta, Mo, W) monolayers, Physical Review Applied, 2025, 23(3): 034082.

[2] Photoluminescence and transport properties of fluorinated graphene via a weak fluorination strategy. Applied Physics Letters, 2024, 124(18): 181901.

[3] Quasi-one-dimensional electron gas for ultrahigh sensitivity of ambient light. Applied Physics Letters, 2024, 124(21): 211601.

[4] Topological hydrogen-bonded organic frameworks (HOFs) and their electronic applications in sensor, memristor, and neuromorphic computing, Applied Physics Reviews, 2024, 11(3): 031303.

[5] Exploring the applications of ScXI (X= S, Se, Te) monolayers for microelectronic nanodevices and photoelectric sensors, Physical Review Applied, 2024, 21(5): 054053.

[6] Evidence of Kitaev interaction in monolayer 1T-CrTe2, Physical Review B, 2023, 108: 094433.

[7] Magnetic Nanodevices and Spin-Transport Properties of a Two-Dimensional CrSCl Monolayer, Physical Review Applied, 2023, 19: 054013.

[8] Variation of magnetism by defects and impurities in two-dimensional magnetic materials based on spin spiral method: A case of δ-(Ga, Mn)As, Applied Surface Science, 2023, 614: 155999.

[9] The in-plane Dzyaloshinsky-Moriya interaction in monolayer 2H-FeTe2, Physics Letters A, 2023, 480: 128938.

[10] Tuning the size of skyrmion by strain at the Co/Pt3 interfaces, iScience, 2022, 25: 104039.

[11] 广义布洛赫条件下二维晶格的磁交换作用, 物理学报, 2022, 71(1): 017105.

[12] Mn掺杂MoSe2及相关异质结的半金属铁磁性.  中国科学: 物理学 力学 天文学, 2022, 52(6):267511.

[13] 反铁磁CrS2到铁磁MoSe2/CrS2磁性转变研究. 中国科学: 物理学 力学 天文学, 2022, 52(2): 226811.  

[14] Bias-tunable persistent photoconductivity for photoelectric memory in van der Waals heterojunctions of black phosphorus/2D electron gas on SrTiO3, Applied Physics Letters, 2022, 120: 061107.

[15] Defect-Engineering-Enhanced Electrical Manipulation of Anisotropic Excitons in Two-Dimensional ReS2, Surfaces and Interfaces, 2021, 27: 101562.

[16] Magnetic properties of Mn-doped monolayer MoS2, Physics Letters A, 2021, 414: 127636.

[17] Off-centered-symmetry-based band structure modulation of hexagonal WO3, Journal of Physics: Condensed Matter, 2019, 31(35): 355501.

[18] Populating surface-trapped electrons towards SERS enhancement of W18O49 nanowires, Chemical Communications, 2018, 54: 6332-6335.

[19] δ-(Zn,Cr)S(111)表面上的Dzyaloshinsky-Moriya作用:第一性原理计算, 物理学报, 2018, 67(13): 137101.

[20] First-principles prediction of a rising star of solar energy material: SrTcO3, Optics Express, 2016, 24(26): A1612-A1617.

[21] Robust half-metallicity of hexagonal SrNiO3, Journal of Solid State Chemistry, 2016, 233: 438-443.

[22] Chun-Lan Ma*, et al., Strain effects on the Néel temperature of SrTcO3from first-principles calculations, Solid State Communications, 2015, 219: 25-27.

[23] Tao-Cheng Zang, Chun-Lan Ma*, Insight of volume-compression-induced changes in SrRuO3 from first-principles calculations, Physica B, 2013, 415: 10-13.

[24] Chun-Lan Ma*, et al., Hydrostatic pressure influence on magnetic phase diagram and structural parameters of SrTcO3 from first-principles calculations, Science China-Physics, Mechanics & Astronomy, 2012, 55(7): 1253-1257.

[25] Chun-Lan Ma*, Tong Zhou, Comparison of the structural and magnetic properties of ground-state SrTcO3 and CaTcO3 from first principles, Physica B, 2012, 407(2): 218-221.

[26] Chun-Lan Ma*, et al., First principles study of the electron density distribution in a pair of bare metallic electrodes, Applied Physics A, 2011, 104(1): 325-328.

[27] Chun-Lan Ma*, et al., The active role played by nonmagnetic Sr in magnetostructural coupling in SrTcO3from first principles, Physics Letters A, 2011, 375(41): 3615-3617.

[28] Chun-Lan Ma*, et al., Effect of orthorhombic distortion and electron correlation on the electronic structure of SrMnO3 from first principles, Physics Letters A, 2010, 374(23): 2388-2391.

[29] Jian Ni, Chun-Lan Ma*, A probable mechanism of spin-state transition in LaCoO3, Modern Physics Letters B, 2010, 24(16): 1785-1790.

[30] Chun-Lan Ma*, et al., First principles investigation on the band gap of the ground state of LaCoO3, Solid State Communications, 2010, 150(41-42): 1983-1986.

[31] Chun-Lan Ma, et al., Alkanethiol-based single-molecule transistors, Applied Physics Letters, 2008, 93(22): 222111.

[32] Chun-Lan Ma, et al., First principles study of the electronic structures of erbium silicides with non-frozen 4f treatment, European Physical Journal B, 2007, 59(3): 297-303.

[33] Chun-Lan Ma, et al., Ab initio electronic and magnetic structure in La0.66Sr0.33MnO3: strain and correlation effects, Journal of Physics: Condensed Matter, 2006, 18(32): 7717-7728.

[34] Chun-Lan Ma*, et al., Electronic Structures of the Filled Tetrahedral Semiconductor Li3AlN2, Chinese Physics Letters, 2006, 23(1): 186-188.

[35] Chun-Lan Ma, et al., “Electronic structures of perovskite BaTbO3 studied by LSDA+U method”, Journal of Physics: Condensed Matter, 2005, 17(50): 7963-7969.

2. 参与论文

[61] Large-gap non-Dirac quantum anomalous Hall effect in nitrided TlSb monolayers on nonmagnetic substrates, Physical Review B, 2024, 110(15): 155423.

[62] Room-temperature ferroelectric, piezoelectric and resistive switching behaviors of single-element Te nanowires, Nature Communications, 2024, 15(1): 7648.

[63] Observation of Electric Hysteresis, Polarization Oscillation, and Pyroelectricity in Nonferroelectric p-n Heterojunctions, Physical Review Letters, 2023,130(19): 196801.

[64] Conductive and Elastic TiO2 Nanofibrous Aerogels: A New Concept toward Self‐Supported Electrocatalysts with Superior Activity and Durability, Angewandte Chemie International Edition, 2020, 59(51):23252-23260.

[65] Strong magnetization and Chern insulators in compressed graphene/CrI3 van der Waals heterostructures, Physical Review B, 2018, 97: 085401.

[66] Oxygen vacancies and induced changes in the electronic and magnetic structures of La0.66Sr0.33MnO3: A combined ab initio and photoemission study, Physical Review B, 2007, 75(9): 094418.

3. 发明专利

马春兰,朱冯,张叶,陈高远,张加永,葛丽娟,蒯家靖. 钛酸钡无机钙钛矿太阳能电池材料,2021.06.11,中国,201810484424.8.

上一条:李阳 下一条:赵润

Copyright 2022 苏州科技大学物理科学与技术学院 All Rights Reserved.

学院地址:江苏省苏州市虎丘区学府路99号教2楼

联系电话:0512-68310095   E-mail:wlxy@usts.edu.cn

手机版